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ABSTRACT 

We present an exact solution of Einstein equations describing a thick. static 
domain wall with a scalar field potential V(@) = Vo cos?(‘-“‘(@/f(n)) (0 < n < 
1). This potential becomes approximately sine-Gordon (n + 0) for f < rn~, At 
infinity, density and pressure vanish and the space-time tends to the Mnkowski 
vacuum on one side of the wall and to the Taub vacuum on the other side. 
Although the density and pressure are reflection symmetric about the center of 
the wall, the space-time metric has no reflection symmetry. 
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1. Introduction 

Hitherto, research on the gravitational effects of domain walls (i.e. plane 
symmetric scalar field configurations with a different value of the scalar field at 

+co and --u-i focused on infinitely thin walls1’2’3 It has been shown that no 
infinitely thin, st,atic walls with reflection symmetry exist in the framework of 
General Relativity. However, if the assumption of reflection symmetry is dropped, 

infinitely thin, static walls exist4 Non-static thin walls were shown to have a 
repulsive gravitational field that tends to Rindler space-time asymptotically. Due 

to a new proposal for a scenario of structure formation5 where domain walls 
with a thickness of the order of Mpc are assumed to arise after recombination, 

the gravitational effects of thick walls have become important 6’7 , because such 
objects can only be traced via their gravitational interaction with photons and 
the matter accreting in their gravitational potential. 

In this paper we present a solution of Einstein equations for a static, planar 

scalar field configuration. In a previous paper7 we discussed the general proper- 
ties of thick domain walls and our main conclusion was that a static domain wall 
with positive scalar field potential cannot be reflection symmetric which implies 

that the vacuum space-time far away from the wall must be Rindler space’ on 

one side and Taub space9 on the other. The exact solution for a domain wall in 
this paper illustrates these properties and also demonstrates that the two vacuum 
states at infinity can be joined smoothly by the wall. A surprising feature of this 
solution is that the density and pressure distribution are symmetric about the 
central plane of the wall whereas the metric and therefore also the gravitational 
field experienced by a test particle is asymmetric. 

2. The Solution 

We are seeking solutions to Einstein equations 

G,, G R,, - ; gp”R = %rGTp, (2.1) 

with the Ricci-tensor R,, and the energy momentum tensor for a scalar field @ 

T,,” = i&W,@ - gtu [ ; gPa ~,@~&’ - v(+)] (2.2) 

The solution describing a domain wall configuration shall be static and plane 
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symmetric, i.e. it shall admit Killing vectors 

a, > & , ay , .G$ - yd, (2.3) 

This allows one to take the metric of the form 

&’ = ,?A(J) & _ ,?B(;) &” _ &+)-A(z) (&’ + d$) (2.4) 

where we have used the coordinate freedom to choose gzl = gYy = eBeA For a 
scalar field Q(z) the energy momentum tensor reads: 

Ttt = T,” = TyY = + ; ,-29 a” + V( @) z p 

Tz: = _ 1 F-?B 
(2.5) 

2 
ar2 + V(Q) E -p 

and the Einstein-equations become: 

($1 = - ,-29 
[ 
4B” - B” - i)<t’B’ -4A” + 3A’” /4 = a,& p 1 G,” = - ,-29 [B” + 2.4’B’ - 3&‘] /4 = -8rG p (2.6) 

G,= = G,Y = - ,-- 
: 
‘B” - B’” - 2A’B + 2A” + 3A” /4 = 8irG p , 

1 

where the prime denotes the derivative d/dz The scalar field equation PzP - 
dV/d@ = 0 simplifies to: 

e-2B @p _ fm+9 = o 

From (2.6) one immediately finds that 

.4” = -hG ezB V(Q) (2.8) 

A” = B”/3 (2.9) 

Eqs. (2.7)- (2.9) are equivalent to the Einstein-equations (2.6) and are sufficient 
to determine the functions A, B and Q for a given V(Q) 
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Since we do not know any systematic way of solving eqs. (2.7) - (2.9) we try 
an ansatz for B(z) 

B = -n lncoshjr - zs) - 1nIi (2.10) 

(n,zs, Ii = const) which turns out to yield a reasonable scalar field potential 
V(a) and a density p and pressure p that vanish for 131 + co With B(z) given 
by (2.10) 1 A(z) and V(z) can be calculated by (2.9) and (2,s) ( respectively. The 
scalar field equation (2.7) (or equivalently one of eqs. (2.6)) yields @P(z) and by 
eliminating z from @P(s) and V(z) one gets I/ as a function of @ Carrying out 
all these steps one finally obtains the following solution to eqs. (2.7) - (2.9) : 

,?A = 1 

cosh”“/3 (z - ic) 
e-4n(r-ro)/3 (2.11) 

,?B = L 1 

Ii? cash?* (2 - 2s) 
(2.12) 

&A = 1 1 

K cash?“” (z - zo) 
e2n(r-:o)/3 (2.13) 

+ - @s = f arcsin tanh (z - is 
1 )I 

V(@) = v, [,,, ((@ - @o)/i)]2(1-n) 

(2.14) 

(2.15) 

1/a 
fE , v. = ?a2 

24rrG ’ 
O<n<l (2.16) 

Ii,n.zs, @a are constants. Note that we have already eliminated all integration 
constants that are associated with a mere resealing of the coordinates. (This 
leaves us with dimensionless coordinates.) The only physically meaningful con- 
stants are then n and K n determines the energy scale f of the scalar field as 
well as the power of the cos in the potential and K determines the amplitude of 
the potential. 
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The energy density p , the pressure p perpendicular to the wall and 1’ as a 
function of z are given by: 

p = (2 -R) v-0 
1 

cosh2(1-n) (i _ to j 
(2.17) 

p = -71 v, 
1 

cosh’(‘-+’ (z - so) 

V(z) = ti, 
1 

cosh’2(1-“) CL - zo) 

(2.18) 

(2.19) 

The density has a single maximum at zs and tends to zero for 121 + 00 p is 
negative and has a single minimum at -0 which agrees with the predictions that 
were derived from general properties of the Einstein equations for planar scalar 

fields in a previous paper 7 ?Jote that the scalar field probes only a half-period 
of the cos-potential, i.e. the cos in (2.15) is positive for finite z and goes to zero 
for Iz/ + co The width A of the density peak is the proper distance between 
some points 2 and -i where the density is pmar/er i.e. 

A= eBdz 
s 
-5 

(2.20) 

Since eB IX l/K and the density maximum pmaz = nIi’(2 - n)/(24&) , the 
width of the peak A is inversely proportional to the square root of the density 
maximum. 

Eqs. (2.17) (2.19) show that the matter distribution is reflection symmetric 
about the plane 2 = zs whereas the metric component ezA (,(2.11) ) is asymmet- 

ric. This also agrees with the claim in’ that no planar, static scalar field with 
reflection symmetry exists in curved space. 

Next, we consider the asymptotic form of the solution. p, p, I’ vanish for 
lz( -+ 00 and the asymptotic form of the metric is 

ds’: = e-2n(z-zO) &2 _ +‘b-lo)&” _ (dr2 + dy2) for z + foe (2.21) 

and 

ds2 = e2d-%)/3&2 _ $,-2+-ddz~ _ e-4+-3o)/3 (&2 + &2) for2 ----co 

(2.22) 

(2.21) is a Rindler space-time* , i.e. Minkowski space-time in an accelerated 



frame and (2.22) is the Taub vacuum’ which after a transformation of the I 

coordinate ? + 2 = E -*n(z-ro)/3(3/4n) and a resealing (i. .?: Q) = 2@(t. x: y) 
can be cast into the form 

&? = ;-1/a (& - &2) - f (&” + &j?) (2.23) 

Thus, the vacuum space-time far away from the wall is different on the two sides 
of the wall although the matter variables exhibit a reflection symmetry. It was 
shown that this asymmetry is a general feature of static, thick domain walls but 
it was not clear whether a continuous connection between these different vacua is 
possible. This example shows that the Minkowski vacuum and the Taub vacuum 
can be joined smoothly by a scalar field. 

Finally, we briefly reiterate the properties of trajectories of test particles 
moving perpendicular to the wall, as already discussed for general domain walls 

in7 The first integrals of the geodesic equations for a test particle on a curve 
~9‘ = (t(~), z(r),O,O) (7 is an affine parameter along the geodesic, a dot denotes 
differentiation with respect to 7) are: 

i = &-?A (2.24) 

i2 = e-2B 32e-2A _ p2 1 (2.25) 

where 2 is the energy constant associated with the Killing vector 8t and n2 = 1.0 
for massive and massless particles, respectively. The acceleration of the particle 
measured by an observer that remains at a constant distance from the wall is 
given by 

5 = ,-‘B[+-2A( 1 + 2tanh(z - 2s)) - p’ntanh(c - 2s) 
I 

(2.26) 

A(;) is a monotonic function and i-” 2 0 implies by eq. (2.25) that massive 
particles (pL? = I) can only move in the region z 2 ZT , where ZT is the single 
turning point 

p _ p+T) = 0 (2.27) 

Thus, any massive particle coming from the Minkowski vacuum and moving 
towards the wall bounces at z = ZT and is repelled back into the Minkowski 
vacuum. This means that any test particle is accelerated towards the Minkowski 
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side. Massive particles on the Taub side are attracted by the wall. For photons 
the possible trajectories are quite different: from (2.26) follows that massless 

pxticles (p 2 = 0) moving perpendicular to the wa,ll feel a repulsive force on 
both sides of the wall since i: > 0 for tanh(r - 20) > -l/2 and i’ < 0 for 
tanh(r - ~0) < -l/2. However, they can penetrat,e the wall freely without any 
turning point. The interesting feature is that the equilibrium point where 5: = 0 
ti tanh (z - zg) = -l/2 does not coincide with the density maximum at zg 

Since domain walls are supposed to have a cosmological relevance in a model 

for structure formation’ we finally give the choice of parameters n, h’ that em- 

ulates the corresponding parameters in5 f is the energ? scale of the scalar 

field which is assumed to be z 10”GeV. This gives a value for n Y lo-* Note 
that there are two possible values for n corresponding to this energy scale of @ 
since eq. (2.16) has two solutions for a given f But the other value of n would 
be close to one which gives by eq. (2.15) a potential that is almost a constant. 
For n close to zero the potential is approximately o( cos”(+/f) The second 

free parameter in V(a) , V, corresponds to m”, in5 , where my z 10m2eV is the 
neutrino mass. Note that the pressure p is non-zero. but much smaller than V 
and p for f < mpl , whereas for a wall in Minkowski space it is always zero. 
Thus it is entirely due to gravitational effects. 

3. summary 

We have shown that there exist solutions of Einstein equations describing a 
sta,tic planar domain wall with finite thickness. The density a,nd pressure tend to 
zero at infinity and the scalar field has a kink-like distribution attaining different 
values at z + +CG and z + -CC A salient property is that the vacuum space- 
time far away from the wall is different on the two sides of the wall inspite of a 
reflection symmetric density distribution. 
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